If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2+s-132=0
a = 1; b = 1; c = -132;
Δ = b2-4ac
Δ = 12-4·1·(-132)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-23}{2*1}=\frac{-24}{2} =-12 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+23}{2*1}=\frac{22}{2} =11 $
| 2+8+9m=10+3m | | 43-4z=5(z-4) | | 12.1+5y=6y+10 | | 7x-14=8x-8 | | p÷24=8÷64 | | 7v+3=3v+23 | | 4u+21=8u-11 | | 3w+4=8w+24 | | -3x²+160x-1600=0 | | 5x2+6x=3 | | X=7y+28 | | 3a-5=5a-10 | | 9z/1+1=(z+4) | | 450/44=x | | 18x-22x=12 | | -92=-8-6(-3a+2) | | 2(4g-16)=28 | | 5(d+3)=35 | | 5(1-7x)+5=115 | | x+.6x=80 | | 3a-5=5a+10 | | 1/2(x-6)+1=3(x-10)-3 | | 16+7w=9w | | 2x+4x+14=0 | | -5+x/2.2=-5.5 | | q=1,000,000*(1-0.08)^2 | | q=1,000,000*(1-0.08)2 | | 3=6+v/3 | | X(x+6=40 | | 12(x+8)=168 | | x=10^4.1 | | x=10^1.7 |